Comet Introduction
The Comet Primer
- To a nonastronomer a comet is a fuzzy object in the sky. My attempts to get people interested in comets in recent years have usually been met with "Is that all?" or "Gee, thanks for dragging me out here in the middle of the night to see that fuzzy spot!"
- To astronomers a comet is a frozen body composed of various ices and dust, or, to quote astronomer Fred Whipple, it is a "dirty snowball." What is it that makes comets exciting to astronomers? Here are a few of the reasons:
- They are unpredictable. Comets can suddenly brighten or fade from view in a matter of hours. They can lose their tail or develop multiple tails. Sometimes they can even split into two or more pieces, so that, through a telescope, several comets can be seen moving together across the sky.
- Comets represent some of the oldest, basically untouched objects in the solar system. Their very composition seems to represent the original makeup of the vast nebula that ultimately condensed to form the sun and planets.
- Recent years have revealed comets have shaped the progress of life as we know it here on Earth. Many astronomers are convinced that early collisions between Earth and comets brought the vast amounts of water that now make up Earth's oceans. These oceans enabled life to get a foothold. On the flip side, the dinosaurs are certainly an example of how collisions between Earth and comets can also bring extinction to different lifeforms. Evidence is growing to show that other periods of mass extinction may have also been caused by such collisions. What would life on Earth be like today if extinction-causing collisions had never occurred?
- Finally, comets are like a time machine. It is thrilling to watch a comet like the famous Halley's Comet with a 75-year period and think about what life was like when the comet was last seen. Similar thoughts fill your mind when watching comets which may have last traveled through Earth's skies serveral hundreds, or thousands, or even millions of years ago.
- In the not too distant past, comets were considered bad omens. Written records from China and Europe extending back nearly 3000 years tell of occasional great comets moving through the sky and the terrible events that people thought they caused. In more recent times, the verbal accounts of the natives of North, Central, and South America, as well as numerous islands scattered across the Pacific Ocean have been recorded. These also inform us that comets were a dreaded sight. Overall, different societies have blamed comets for wars, earthquakes, sicknesses, and even the deaths of leaders.
What is a comet?
- As stated earlier, a comet is basically a ball of ice and dust. The typical comet is less than 10 kilometers across. Most of their time is spent frozen solid in the outer reaches of our solar system. The graphic below shows all of the components of a comet. At the stage being discussed at this point, the comet is nothing more than the nucleus. Except for a few suspected dead comets, and a couple of suspicious asteroids that occasionally show gas emissions like a comet, the nucleus is never really seen from Earth. By the time a comet becomes bright enough to be seen from our planet, it is usually exhibiting a coma.
The Nucleus
- After the spacecraft Giotto photographed the nucleus of Halley's comet back in 1986, we now know that a comet's nucleus probably has a surface that is best described as a black crust. Although the length of the nucleus of Halley's comet is about 12km, it is believed that comet nuclei can range from 1 km to perhaps 50km across. Comet Hale-Bopp of 1997 had a nucleus that was perhaps 40km across.
- The black crust of the nucleus helps the comet absorb heat, which in turn causes some of the ices under the crust to turn to a gas. With pressure now building beneath the crust, the serene, but frozen landscape begins to bulge in places. Eventually the weakest areas of the crust shatter from the pressure beneath, and the gas shoots outward like a geyser and is referred to by astronomers as a jet. Any dust that had been mixed in with the gas is thrown out as well. As more and more jets appear, a tenuous gas and dust shell forms around the nucleus and this is called the coma.

The nucleus of Halley's Comet as photographed by Giotto in 1986. Note the active areas that are spewing dust and gas into space. This material will form the coma and tails of the comet.

This is a drawing of the region surrounding the nucleus of comet Hale-Bopp on 1997 March 10. This shows an intense emission or jet coming from the nucleus which is forming features called "hoods" or arcs within the coma. The hoods are features formed as a result of the rotation of the nucleus. In the case of Hale-Bopp, a new hood was formed nearly every 12 hours.
The Coma
- Comets can typically display a coma several thousand kilometers in diameter, with the size being dependent on the comet's distance from the sun and the size of the nucleus. The latter is important because since jets generally spring up on the side of the nucleus facing the sun (that side gets warmest), and since large nuclei have a greater surface area facing the sun, then there is the potential for larger numbers of jets and greater amounts of gas and dust feeding the coma. One of the largest comets in history was the Great Comet of 1811. It was one of the few comets in history to be discovered with a relatively small telescope at an unusually great distance from the sun, in this case over half-way to the planet Jupiter's orbit. The nucleus has been estimated as between 30 and 40 kilometers in diameter. At one point during September to October 1811 the coma reached a diameter roughly equivalent to the diameter of the sun and was a very notable naked-eye object seen by people around the world.
- Even though the coma can become quite large, its size can actually decrease about the time it crosses the orbit of Mars. At this distance the particles streaming out from the sun provide enough force so as to act as a wind and will literally blow the gas and dust particles away from the nucleus and coma. This disruption is the process responsible for a comet's tail, the most spectacular feature of a comet.
The Tail
- When you have a large comet that moves well inside the orbit of Earth, you have the potential for a long tail. The current record holder for longest tail length is the Great Comet of 1843. Its tail extended more than 250 million kilometers. What this means is that if the comet's nucleus were placed in the center of the sun the tail would have stretched passed the orbits of Mercury, Venus, Earth, and Mars!
Where do comets comet from?
- Our solar system began as a vast cloud of gas and dust. Several billion years ago, this cloud slowly rotated around our very young sun and particles within the cloud collided with one another. During this time some objects were obliterated by these collisions, while others grew in size and were to later become the planets.
- Throughout this early period, comets probably filled the solar system. Their collisions with the early planets played a major part in the growth and evolution of each planet. The ices that make up comets appear to have been the very building blocks that formed the early atmospheres of the planets, and scientists now very strongly believe that it was the collisions of comets that brought water to our world and enabled life to begin.
- Over the years, comets actually became rarer within our solar system. They no longer fill the skies as they did 4 billion years ago, and today a prominent naked-eye comet can be expected only about once a decade. Astronomers with powerful telescopes can see many more comets, but even in this case it is still rare for as many as 15 or 20 comets to be detectable in the sky at any one time.
- Today, most comets are located outside our solar system in part of the original cloud of dust and gas that has remained virtually untouched for billions of years. These regions are referred to as the Oort Cloud and the Kuiper Belt.
- The Oort Cloud was first theorized by the Dutch astronomer Jan Oort in 1950. His investigation of the orbits of comets with very long orbital periods brought him to conclude that a large "cloud" of comets existed far outside the solar system, possibly within the range of 5-8 trillion kilometers (or more) from the sun. The total number of comets within this belt was estimated as a trillion. It is thought that objects within this cloud are occasionally ejected either by collision with one another, or by the gravitational forces of stars. Many of the ejected objects probably never cross the paths of the planets, and still more do not come close enough to be seen with even the largest telescopes. However, a few do manage to travel into the inner solar system and are subsequently seen from Earth. This cloud remains a theory only, as it has never been directly detected.
- The Kuiper Belt is a region first theorized by the Dutch-American astronomer Gerard Kuiper in 1951. Seeing that Oort's cloud of comets did not adequately account for the population of comets with short orbital periods (making complete orbits around the sun in less than 200 years), Kuiper conjectured that a belt of comets probably existed outside the orbit of Neptune within the range of 30 to 50 astronomical units (2.8 to 4.6 billion miles) from the sun. Collisions and perturbations by the planets of our solar system are believed to be the reasons for the ejection of bodies from this belt. Around 1988, astronomers David Jewitt (University of Hawaii) and Jane Luu (University of California at Berkeley) began searching for members of the Kuiper belt using modern electronic cameras attached to a large telescope on Mauna Kea, Hawaii. The equipment was capable of detecting extremely faint objects. After nearly 5 years of systematic searching they found a distinct image on 1992 August 30, which was subsequently designated 1992 QB1. The object was moving very slowly, and calculations eventually revealed the object took 291 years to orbit the sun at an average distance of 43 AU. Since, the discovery of that object over three dozen additional objects had been found as of the end of 1996.
The comet pages have been accessed:
times since November 6, 1995.
